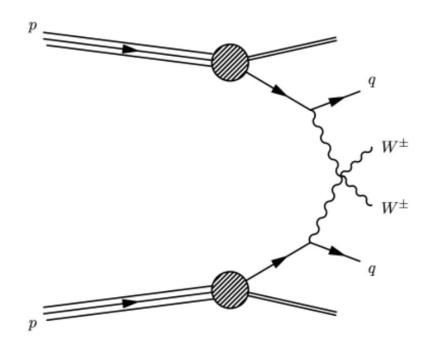
Sensitivity to Longitudinal VBS at 100 TeV

Aram Apyan¹, **Chilufya Mwewa²**, Luka Nedic³, Marc-Andre Pleier², Karolos Potamianos³

Brandeis University¹, BNL², University of Oxford³

EF04 Topical Group Meeting

22 October 2021



Introduction

- Aim: Study the sensitivity to longitudinal Vector Boson Scattering (VBS) at a 100 TeV hadron collider
 - > An important medium to test electroweak symmetry breaking (Higgs contribution cancels divergences)
 - Search for anomalous quartic gauge couplings
- We will explore the fully leptonic $W^{\pm}W^{\pm}$ jj channel
 - > offers the largest electroweak to strong production cross-section ratio among VBS processes

Signature

➤ 2 same-sign leptons, large MET, 2 forward jets

Backgrounds

- \triangleright Diboson processes (WZ, $W^{\pm}W^{\mp}$,)
- > Z+jets and W+jets processes
- ttbar and single top processes
- > Triboson processes
- Z+gamma and W+gamma processes

Status and plans

- Our primary goal is the sensitivity measurement
 - > Studies such as anomalous couplings will depend on availability of person power
- Production of signal sample is in progress
 - > So far, we have generated some test samples and performed some basic generator level validation (more on next slides)
 - Setup for the final production is being prepared (including interface to Delphes)
- For background processes, we will use the centrally generated samples
 - > We might have to generate a WZ electroweak sample and also a QCD induced WZ sample
 - > Efforts to help with validation of central samples are underway (more on next slides)
- For analysis, we plan to use a BNL framework (also used for the <u>yellow report</u> study at HL-LHC)
 - > Entire analysis chain (including cross-section measurement) is in place but needs some tweaking
 - Currently just working with rivet for our validation studies

Production of signal sample

Sample details

- Generator used: MADGRAPH5 3.1.0+PYTHIA8 with dipole recoil ON
- Generated processes:

```
o generate pp > j j W^+W^+ QCD = 0 QED = 4, W^+ \to l^+ v_l

o generate pp > j j W^+\{0\} W^+\{0\} QCD = 0 QED = 4, W^+ \to l^+ v_l

o generate pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to l^+ v_l

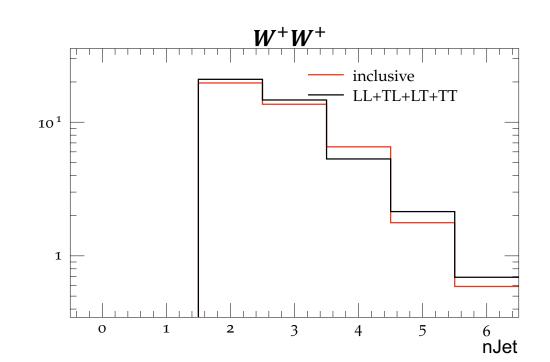
o add process pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to l^+ v_l, W^+ \to l^+ v_l

o add process pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to ta^+ v_l, W^+ \to l^+ v_l

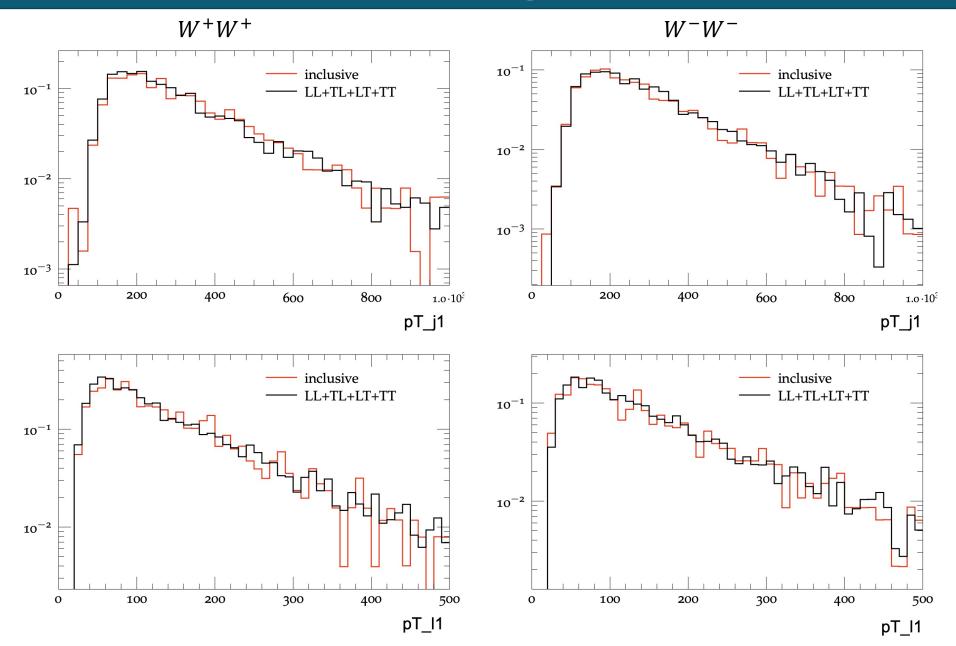
o generate pp > j j W^+\{0\} W^+\{T\} QCD = 0 QED = 4, W^+ \to ta^+ v_l
```

- This is repeated for the W^-W^- case
- Note: decay to taus has to be added separately for the mixed polarizations. see <u>launchpad</u>
 - > taus are also not included in the particle definition. E.g we use "define I+ = e+ mu+"
- PDF set: NNPDF3.0 LO
- Number of events generated: 10000 per sample
- C.M energy: 100 TeV

Sample Cross-sections


Generator cuts

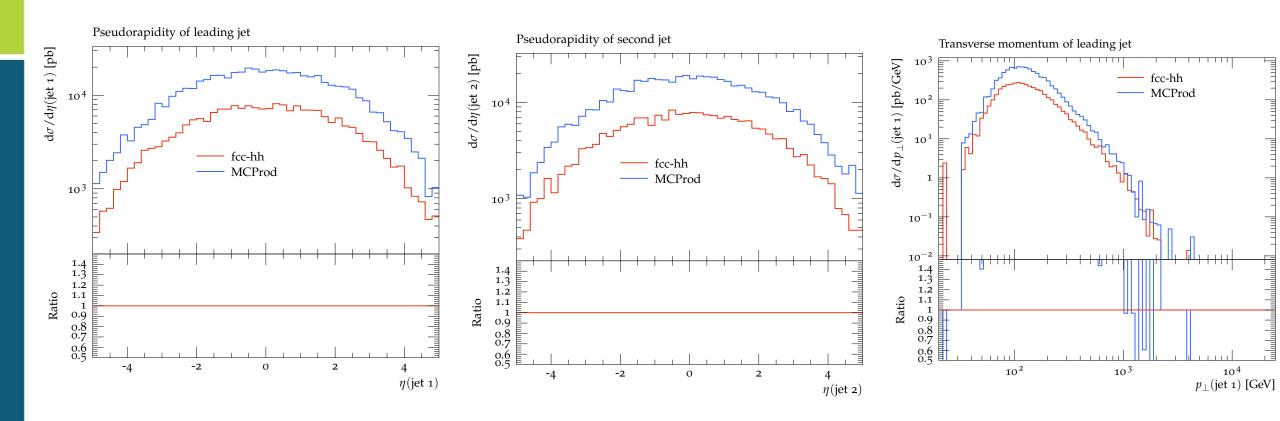
- Lepton $p_T > 10 \text{ GeV}$
- Jet $p_T > 10 \text{ GeV}$
- Jet eta ≤ 6.5
- Lepton eta ≤ 5.0


	W^+W^+	W^-W^-
Inclusive	0.399 pb	0.222 pb
LL	0.023 pb	0.013 pb
LT+TL	0.139 pb	0.077 pb
TT	0.236 pb	0.131 pb
LL+LT+TL+TT	0.398 pb	0.221 pb

Cuts applied in same-sign WW rivet routine

- 2 same-sign leptons, $p_T^l > 20 \text{ GeV}$
- nJets ≥ 2 , $p_T^j > 30$ GeV, $|\eta_i| < 4.5$
- $m_{jj} > 200 \text{ GeV}$
- Min $\Delta R_{II} > 0.3$
- MET > 40 GeV

Validation of signal sample



Validation of Background Samples

Validation Procedure

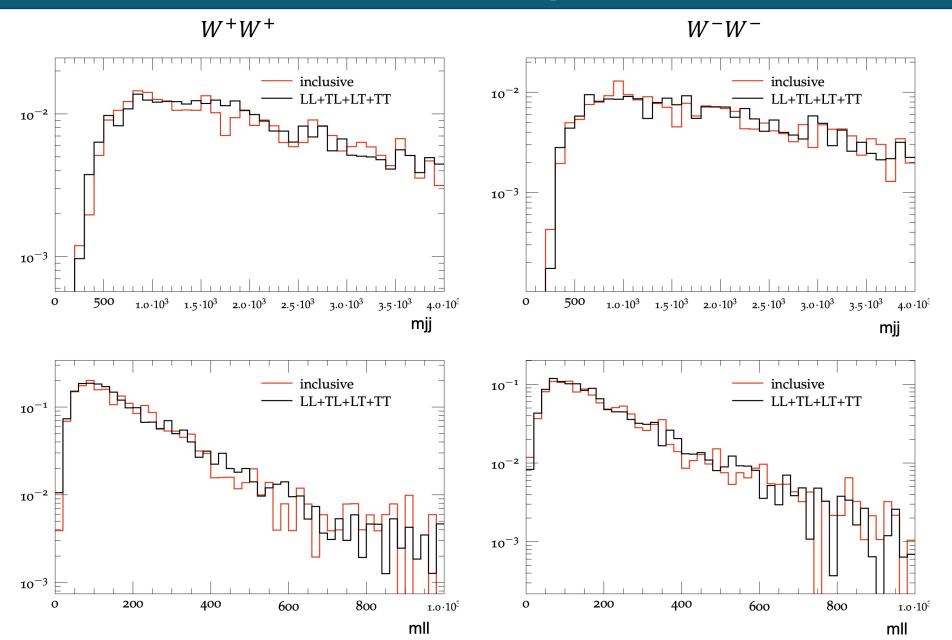
- ❖ Validation involves comparing snowmass (MCProd) samples to fcc-hh samples at truth level
- Example: ttbar sample
- Number of events: 10,000
- fcc-hh: /eos/experiment/fcc/hh/generation/lhe/mg_pp_tt012j_5f/events_022118229.lhe.gz
 - > eos is not mounted on the snowmass cluster
 - Sample is thus copied to BNL cluster and converted to hepme
 - > Run through some generic and same-sign WW rivet routines
- MCProd: /collab/project/snowmass21/data/smmc/v0.1/r1/100TeV_tt.tar.gz/mgstep/out_5423_13.lhe.gz
 - Converted to hepmc on the snowmass machine and copied to BNL cluster
 - > Run through some generic and same-sign WW rivet routines

Validation results

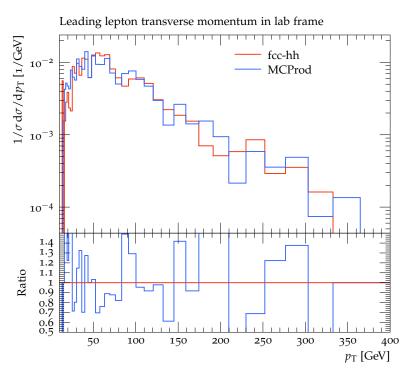
- ❖ The MC_JETS rivet routine is used for these plots
- Disagreement between the two samples is quite obvious

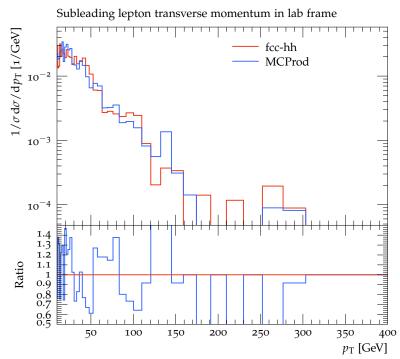
Differences between fcc-hh and Mcprod samples

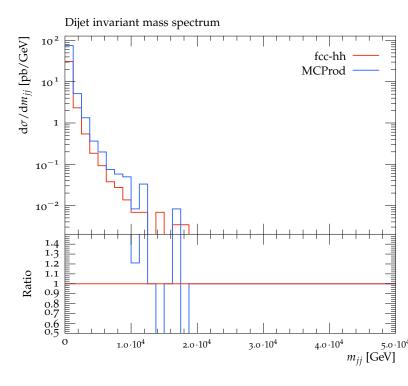
Fcc-hh sample	MC prod sample
MG v2.5.4	MG v3.1.1
Jet pT > 5 GeV	Jet pT > 20 GeV
Lepton pT > 5 GeV	-
Jet eta < 8	Jet eta < 5
Lepton eta < 8	-
MII > 20 GeV	-
Cross-section: 0.40×10 ⁵ pb	Cross-section: 1.03×10 ⁵ pb


- ❖ The fcc-hh sample is a dilepton sample whereas the Mcprod sample is inclusive
- ❖ We might need to carefully define a dilepton phase space in order to compare them properly
- ❖ We'll follow-up with the MC production team

Summary


- ✓ We have exercised and validated the setup for signal sample production
- ✓ Preparation for the full signal sample production is progressing well
- ✓ We have started looking at the validation of some background samples (ttbar)
- ✓ Comparison to fcc-hh samples is not yet well understood
- ✓ Only relying on rivet for analysis at the moment
- ✓ Analysis framework is in place but needs some adjustments


Back-up


Validation of signal sample

Validation results (ttbar)

Central background samples

Dataset name	Physics process
$_{ m Bj-4p}$	γ or on-shell W, Z
Bjj-vbf-4p	γ or off-shell W,Z,H in VBF topology
$\mathrm{BB} ext{-}4\mathrm{p}$	Diboson (γ, W, Z) processes
BBB-4p	Tri-boson (γ, W, Z) processes including BH
LL-4p	Non-resonant dileptons (including neutrinos)
LLB-4p	Non-resonant dileptons with an on-shell boson
H-4p	Higgs
tj-4p	Single top (s- and t-channel)
${ m tB-4p}$	Single top associated with a boson
tt-4p	$tar{t}$ pair production
${ m ttB-4p}$	$t\bar{t}$ associated with γ, W, Z, H